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1 INTRODUCTION

During 1982-823 work progressed on four separate fronts
corresponding to both experimental and computational aspects of
turbulent flow in 1r0° bends for both square and round tubes.

The year saw the completion of work on the square sectioned
bend and Mr. R.W. Johnson's PhD thesis documenting in great detail
the research accomplished will be circulated within two months.
Here, therefore, in Section 2 only a short summary will be given.
Appendix 1 includes a paper by Chang, Humphrey, Johnson and
Launder [1] reporting the outcome of the computational work
reported at the 4th Turbulent Shear Flows Symposium in Karlsruhe.

The computational work on flow in circular sectioned ducts
has also reached the stage of publication [2,3,4] and copies of
these papers are also appended to supplement the summary of } ﬂ
computational and experimental research given in Section 3. |
Finally, Section 4 outlines the work now underway to bring thy
project to completion.

2 SOUARE SECTIONED BEND
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2.1 Experimental Program //’/

2.1.1 Apparatus and Instrumentation The design and construction v
of the apparatus was described in some detail in last year's A ”;
Annual Report J{642" The radius of the bend was 3.35 times the duct

hydraulic diameter (dg), the width of the duct walls being RR.9
mm. Up to 70 hydraulic diameters of flow development were
available prior to the bend but the main emphasis of the
experiments was directed at the case of 31 Dg which corresponded
with the conditions at which the UC Berkeley flow field data had ies

been taken., (In fact, no major differences in flow or thermal
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behaviour in the bend itself arose from the variation in the
length of development). ~Downstream of the bend 40 hydraulic
diameters of instrumented straight ducting allowed the effects of
decaying secondary flow to be studied.ﬁ;\\\

Heating was provided by electrically~heated Intrex
sheeting, a gold film deposited uniformly on a plastic substrate.
The sheets were cut to size and affixed to the inside of the duct
with the gold film on the surface exposed to the airstream.-
Variations in resistivity of the Intrex were found to be within z
8% of the mean provided material from near the edges of the roll
was discarded. 1In use a certain amount of ageing was evident and .
when local non-uniformities became serious the sheets were removed
and replaced by new material.

Thermocouple measurements at up to 9 stations recorded wall
temperatures at 12 positions around one half of the perimeter
(the flow being nominally symmetric about the surface passing
through the centre of the duct and lying in the plane of the
bend). Temperatures were also measured at 3 positions on the
opposite side of the duct to provide symmetry checks. The maximum
wall temperature was limited to 30°C above ambient to 1limit the
rate of deterioration of the Intrex sheeting and to keep the
variation in air properties to unimportant levels. A rake
carrying 13 chromel-alumel thermocouples allowed measurements of
the temperature field over the duct cross section at the same
positions as the wall temperatures were recorded.

The ducting was encased in expanded polystyrene insulant to
a thickness of 40 mm.

2.1.2 Test Program Measurements of wall and interior
temperatures and heat fluxes were made at a Reynolds number of
56700 corresponding to that of the Berkeley experiment. Moreover,
although Professor Humphrey's group were responsible for
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documenting the flow field [6], some limited velocity-field
measurements were judged necessary at UMIST to establish that our
flow conditions were indeed sensibly the same as at Berkeley (this
verification acquired further importance as it was found that the
numerical computations exhibited a strikingly different flow
pattern midway around the bend from the measurements). Velocity
profiles were obtained by hot-wire traverse 5 diameters upstream
of the bend and at 90°,

The remaining tests were made with 70 diameters of inlet
flow development in order to establish essentially fully-developed
conditions at entry to the bend. Limited temperature and
velocity-field data were taken at the same Reynolds number as the
earlier test; these indicated no significant variations in flow
structure. In the limited time available attention was mainly
directed at obtaining data on heat transfer coefficients over as
wide a range of Reynolds number as possible rather than focusing
on a very detailed mapping of the interior temperatures at one
Reynolds number., Data were thus obtained at nominal Reynolds
numbers of 9 x 103 and 9 x 10%.

2.1.3 The Experimental Results Figure 1 compares Berkeley and
UMIST measurements of streamwise velocity at 90° around the bend.
A striking feature of the Berkeley measurements was the double
peak in streamwise velocity (a feature that neither their nor our
computations reproduce). The velocity data obtained at UMIST
confirm this feature of the Berkeley experiments. The small
differences between the two sets of readings could well be due to
a positioning error in the UMIST data. (Our original intention
had been to take only a single bottom-to-top traverse alonqg the
mean radius of curvature but, to allow more direct comparison with
the Berkeley data, which were obtained from side-to-side
traverses, rather rudimentary adaptations were made to allow
traverses at other radii). It was concluded therefore that we
could assume that the flow-field in the UMIST apparatus was indeed




=

(— I — B — I —

" T T P U R | , ST S

essentially the same as documented in the geometrically similar
half-scale Berkeley apparatus.

Temperature profiles across the duct are shown for 45°, 90°
135° and 180° in figure 2. These mimic closely the corresponding
velocity profiles. For example, by 45° the "peak®" temperature
(actually the coolest point in the stream) has shifted right of

. centre, while at 90o there is a deep trough in the temperature in

just the same position as the trough in velocity shown in figure
1. The remains of these troughs are still clearly present at 125°
and are faintly visible even at 180°.

The development of the Nusselt number around the bend is
shown in figure 3. Up to entry to the 180 ° section the Nusselt
number is nearly uniform along all walls. By 45°, however, the
level of Nu on the inner line of symmetry has fallen by 25% while
the average level has risen by about 10%. By 90° there is more
than a 2:1 ratio in the Nusselt numbers recorded on the inner and
outer symmetry planes. This ratio remains nearly constant over
the second half of the bend though the absolute level of Nu
diminishes slowly. There remains a significant difference in heat
transfer coefficient even 10 diameters downstream of the bend, the
heat transfer coefficient on the outer bend wall being 30-50%
higher than on the inner wall. Throughout, the heat transfer
coefficient on the side wall follows closely that on the outer
wall.

2.2 Computational Program

2.2.1 Numerical and Physical Model The computer program
embodying a three-dimensional semi-elliptic solving scheme for the
averaged equations of motion was provided by Professor Humphrey.
It is based on the discretizational and programming strategy of
the TEACH family of computer codes save that convective transport

3
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is here represented by quadratic upstream weighting [7] . The
code incorporates as alternatives the k~¢ Boussinesg viscosity
and the algebraic stress models of turbulence, both of which
utilize the standard transport equations for the turbulence energy
and its dissipation rate €,

The effort at UMIST initially consisted of a very thorough
re-checking of the algebraic and coded forms of the transport
equations for the flow-field variables. This exercise proved very

useful in establishing confidence that what was inevitably a large

and complex code was free from coding error.

Thereafter the computer program was adapted to incorporate
a new wall-function treatment for the viscosity-affected zone
between the near-wall node and the wall itself [8]. A further
adaptation was the inclusion of the streamline-curvature
modification to the transport equation fore[ 9] proposed on the

N basis of two-dimensional flows. Further details are given in ref.

- [1]appended. A solving routine was also included for the thermal
- energy equation., Since the fluid properties were taken as
. independent of temperature, this equation was solved only after a

converged solution had been obtained to the velocity field.

2.2.2 Comparison of Computed and Measured Behaviour Initial
[ computations were made using a 720 x 12 non-uniform grid to map the
cross-section of the duct with 11n streamwise planes, S0 of which
[~ were located on the bend itself (i.e. a 1° spacing). The nodal
o density was subsequently refined to 15 x 2® in the cross-section %
. while over the first 45° of the bend computational planes were :
" spaced at 1}° {ntervals. These refinements, while leading to i
changes up to a maximum of 108 {n the secondary flow, had only a
very weak effect on the streamwise velocity profiles.

The situation regarding computations can most effectively
be conveyed by reference to the 90° plane (ref.(1] {n the Appendix
shows further detajls). From figure 4 it is evident that the




s
—

-6 =

large trough in the streamwise velocity shown by the experiments
is not.feptoduced by the computations. There are unfortunately no
data between the 45° and 90° stations but the compuvtations seem to
indicate that the trough has arisen through the secondary velocity
separating off the inside wall somewhere between these two
stations thus giving a secondary recirculation, figure S, in the
opposite sense than usual, It must be said however that ' i
measurements at 90° show no sign of such a reversed eddy so this
explanation remains tentative. The behaviour shown in figure 4 is
nearly the same as that obtained at Berkeley by Chang [10] using,
in both cases, the k~e¢ Boussinesq viscosity model. The relative
insensitivity of the results to grid refinementf and to the choice
of wall function suggests that the poor predictions are mainly due
to the turbulence model used in the main flow region., Yet it is
found [1] that very little effect resulted from introducing the
curvature correction to the transport equation or from adopting
the algebraic stress model, Although Mr. Johnson has now
concluded his research, Professor Young Don Choi, an academic
visitor mentioned in the footnote, continues to address the

problem. 3
3 ROUND SECTIONED DUCT
[ 3.1 Experimental Program

The experimental work on the round sectioned duct has
greatly benefited from extensive interaction with Professor J.W.
Baughn of the Mechanical Engineering Department, University of
California Dpavis, We concluded that the attainment of a
uniform-heat-flux boundary condition was impracticable for this
particular geometry and so the apparatus design has been based on
a uniform wall temperature rig. The 199° bend section has been
fabricated in two halves (figure S) machined from solid blocks of
aluminium., The ratio of bend radius:pipe diameter is the same as

[ I |

R

* Current work at UMIST by Professor Young Don Choi with twice as many cross-
sectional nodes snd 350 more streamwise planes has led to only minor improve-
ments, .
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for the square sectioned duct, 3,35:1. Inlet and outlet tangent
sections each 40 diameters in length made of high-grade aluminium
tubing are installed. At the downstream end of this assembly,
connection is made to the flow-metering section and fan exhaust
used for the square duct experiment.

Heat transfer rates to the duct wall are to be obtained by
heat flux meters based on the design of Professor Baughn and one
of his students at UC Davis, ref.[11] . The holes into which the
meters will be cemented are clearly visible in figure A, A sketch
of the meter is shown in figure 7. The principle of operation is
that heat is supplied via resistors to the flat metal cone at a
rate that is just sufficient to keep the cone temperature the same

as that of the pipe. At present a prototype meter has been built
and is undergoing testing.

3.2 Computational Program

3.2.1 Numerical Solution Procedure In the 19f1/82 Annual Report
we reported that a semi-elliptic procedure for flow through
toroidal ducts had been developed and showed its successful
application to one of the laminar- flow cases of Agrawal, Talbot
and Gong [12] at a Dean number of 123, During 19R2/R22 the
procedure has been applied to duct flows at successively higher
Dean numbers and this has pointed the need for further
refinements.

An important step has been the replacement of the SIMPLE
algorithm by the more recent SIMPLER procedure, Patankar [13] The
former approach, while successful enough when curvature terms were
moderate, did not succeed in procuring convergence as the Dean
number was successively raised. Details of how SIMPLER has been
implemented in the present semi-elliptic scheme are given in
reference [?] and [3] contained Lp_the Appendix.
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A numerical refinement of a different kind has been
prompted by the problem of computing turbulent flow. Because of
the very strong secondary flow that is generated close to the
wall, it was felt strongly desirable to discard the habitually
used wall-function approach and instead carry out the integration
to the wall 1itself. However, there was insufficient core
avajlable to us to add the further ten or so radial lines needed
to resolve thé viscous and buffer reqions+ . The problem was
removed, however, by recognizing that across the region where
viscous effects were significant, the pressure variation would be
adequately obtained from assuming radial equilibrium. 1In a semi-
elliptic solver it is the pressure that limits the mesh density
because only this variable requires three-dimensional storage.
Thus, we put in additional velocity nodes across the near-wall
sublayer but no corresponding nodes for the pressure. Further
details may be found in (4] in the Appendix.

The computations for turbulent flow have so far adopted the
standard k~¢ Boussinesq viscosity model in the fully turbulent
region matched to the van Driest form of the mixing length
hypothesis across approximately the 5% of the flow nearest to the
wall. Further details are given in ref, [3] 1in the Appendix. 1In
solving the thermal energy equation to predict heat transfer

coefficients, a uniform turbulent Prandtl number of n.,o is adopted
throughout the pipe.

3.2.2 Examples of Applications Although the main interest in
the project is in turbulent flow, a thorough testing of the
computational scheme for laminar flow was felt desirable in view
of the several sets of data available. In continuation (from our
1981/82 report) of the study of the Agrawal data [1?]), figure R
compares streamwise velocity profiles at two sections for a Dean
number of 543, The computations started at the entry to the bend
with a uniform inlet velocity assumed. The grid employed was

20 x 20 x 100. Close agreement is displayed between the computed
and measured behaviour., A further case examined was that of

+

More than 10 nodes would probably be required if a more elaborate closure
vere adopted,

B e e e e T

In the present work this region is spanned with the mixing length hypothesis.
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Enayet et al [14] in a 90° bend with a radius:diameter ratio of
only 2.8:1 giving a Dean number of 464. 1In this case the bend was
preceded by a straight entry section and, as a result, at entry
the boundary layer thickness was about 0.5 times the pipe radius.
The higher Dean number and the presence of relatively thick
boundary layers 1leads to a stronger secondary flow being
established, Figure 9 indicates, however, that a satisfactory
numerical simulation is nevertheless obtained.

Enayet et al [14] also measured the development of
turbulent flow through the same duct and our computations of
streamwise velocities in this flow are shown in figure 10,
Agreement is now less complete than for the laminar flow case and,
in particular, the trough in the velocity profile at 40° ana 75°
is only qualitatively predicted. Nevertheless, the measured
behaviour is simulated far more satisfactorily than for the square
sectioned duct discussed in Section 2.

Computations of the heat transfer behaviour are provided in
ref. 4 in the Appendix. Comparisons with the experiments of
Seban and McLaughlin [15S] of fully-developed flow in a coil
suggest that our scheme predicts accurately the rise in the
circumferentially averaged heat transfer coefficient but that the
augmentation on the outside of the bend is underestimated as is
likewise the damping around the inside. This is qualitatively the
type of behaviour to be expected with a Boussinesg-type model
since it does not mimic the great sensitivity to streamline
curvature that real turbulence displays. The thermal field
computations of the 2.Rf:1 90° bend of Enayet et al [14] indicate a
five~-fold variation of local heat transfer coefficient around the
bend at 752, The experiment was purely concerned with the flow
field - no heat transfer was involved - but, on the basis of the
comparison with the Seban-McLaughlin data, it would seem probable
that in that geometry as mu:h as a ten-fold variation in heat
transfer coefficient may actually occur between the inside and
outside of the bend.
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Future Work

4,1 Experimental Research

The principal experimental work concerns the commissioning
of the circular-sectioned tube apparatus. First tests on the
assembled rig will begin during April 190Rf4, The initial testing
will be concerned with the Zn 8itu performance of the heat flux
meters, tested in the straight entry section against well-
established data of developing flow in a circular tube. The
pattern of experiments will be similar to that in the square-
sectioned duct: a detailed set of measurements of wall flux and a
mapping of the temperature field at the same Reynolds number as
the Berkeley circular tube experiments. Some limited confirmatory
velocity field data will also be gathered. Thereafter wall flux
data will be obtained at the extremes of Reynolds number
accessible to the fan.

Looking further ahead (further than the period covered by
the present grant), we will aim to obtain from the two 180° bend
apparatuses several additional sets of experimental data. These
will include explorations where the flow entering the bend is
essentially at uniform velocity and studies at the low-Reynolds-
number end of the turbulent regime where partial laminarization
may occur in passage around the bend.

4,2 Computational Work

Our present efforts are directed at incorporating an
algebraic stress model into the circular bend code. There is
reasonable optimism that useful improvements in the fidelity of
the computer simulation will result., The lingering doubt concerns
the fact that, when included in the square duct code, the
algebraic stress model did not produce better results. Against
this discouraging fact, however, may be set many striking
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successes (recorded in the literature of the last ten years) from
applying algebraic stress models to curved flows. Moreover, in
contrast to the fairly satisfactory prediction of the
round-sectioned 90° bend with the k~e Boussinesq viscosity model,
the square-sectioned duct predictions with the same turbulence
model go completely wrong beyond 45° of arc. Our current view is
that the poor accuracy of predictions in the square sectioned duct
is mainly due to weaknesses in the dissipation rate equation.
Over the remaining period of the grant Professor Choi's efforts
will be directed at improving this aspect of the modelling.
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Figure 6

Note:

Photograph of 180°-bend test
section

Holes in hand-held section are
provided for heat flux meters)
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TURBULENT MOMENTUM AND HEAT TRANSPORT IN

FLOW THROUGH A 180° BEND OF SQUARE CROSS-SECTION

S.M, Chang J.A.C. Humphrey

Department of Mschsnical Engineering,
University of California, Berkeley,
USA.

ABSTRACT

The paper reports flov and heat :r_nsf.r pradictions
of turbulent flow in passage around a 180 square-
sectioned bend. The numerical results are obtained from
a finite-volume discretization of the semi-elliptic form
of the Navier Stokes and energy equations. The turbulent
stresses are represdnted by the k-¢ Boussinesq viscosity
modal doth in its scandard form and with a streamline
curvature correction. Serious differences between
experiment and prediction exist for both forms and
suggestions are made for their origin. Heat transfer
computations indicate that from 45° - 180° the secondary
flov provokes at least a2 2:1 circumferentisl variation
in heat transfar coefficiemt around the duct perimatar
and that differences of 40% between the mean heat
transfer coefficient in each wall persist st least 10
diameters downscress.

1  INTRODUCTION

Cc'qunts and flow solution schemes have daveloped
€0 a point where sarious numerical studies of convective
heat ctransfer in complex, 3-dimensional flows can now be
aade. But, for turbulent flow, what level of accuracy
can one expect from such a simulation? The question is
of great practical interast for if the aceuracy can be
relied on within the allowable tolerances the cost of
computation - typically a few hundred dollars per run
= will ofzen be negligible compared with the cost of
getting the information from experiment. This is the
question our resesrch oo flow sround 180° bends has been
addressing.

The 180°-bend flow has several qualities thac make
it wall suited as s bench-mark test case. It has very
strong practical conmnections, especially in heat
exchangers, yet its topography is relatively simple.
This simplicicy means thac the flow boundary condictions
can be easily and unsmbiguously reproduced by & comeutor;

it also means that obtaining tolerably accurate mmerioal.

solutions (vhacever may be the frailties of the physics)
is a target within sights - though there may be argument
esbout whecher it is yet vithin range. It is & more
chsllenging flow than the 90 bend that provided one of
the test cases at the 1981 Stanford Conferencs (Xline
ot al, 1981, 1982) becsuss turbulent stresses generated
by the strong secondary flow have longer to sct om the
mesn flow, Moreover, smd wost importancly, detailed
experimencal daza sre svailable (Chang et al, 1983) wich
vhich to draw cowparison. °

Computations of flow sround the 90 square=sectioned
bend adopted for the Stanford Conference have been
reported by Humphrey et al (1981, McDonald (1982),
Abddlmeguid at al (1982), Rodi et al (1982), Moore and
Moote (1982) end Chang et al (1982); the first three
employ 8 discretisscion of che full Navier Stokes
equations, the last two adopt a semi-elliptic formulation

R.W. Johnson B.E. Launder

University of Manchester Institute of
Science & Technology,
Mauchester, England.

in vhich only the pressure field is stored over the full
domain (Pratap and Spalding, 1975) and, necessarily,
streamwise derivatives in the momentum equations are
discarded. All but McDonald's and Moore's studies
employed the same mathematical model for the turbulent
stress field - the k-c Boussinesq viscosity model. Yet
the flow patterns predicted by these schemes bear only s
qualitative resemblance to each other or, for that
matter, to the experimentul daca. The fully three-
dimensional discretizations have of necessity to use a
coarse grid vhich has severely limited the numerical
sccuracy available. The semi-elliptic schemss which have
allowed 80 or more stresmwise planes (not all, of
course, in the bend itself) achieve samevhat better
oversll agreement with data.

The computations of Moore and Moore (1983) and
McDonald (1983) extend through the viscous sublayer to
the wall allowing s better numerical resolution of the
near-wall region than the k-t trastmsnts (vhich apply
"wall functions" to bridge the 5% of the flow nearast
the wall). This fine-grid approach was slso followed in
the work of Cousteix et al (1983) for the same conference
though they make only a two-dimensional inviscid
calculation for the pressure field. The mngri.cu
simplification this brings is considersb’  .i..'s 4 chree=
dimensional marching scheme may be adopt d; iu view of
the poor agreement obctained, howaver, 7= remsins
quastionable vhether this basis for obtaining the pressure
is useful in bends of small aspect ratio with substantial
curvaturs. Of course, more nodes near the vall sasns
fewer slsewvhers; morsover, instead of calculating the
dissipation rate ¢ from a transport equation these
groups obtained it via a prescribed length scale distrid-
ution - with such uncertainty as to the appropriate
prescription.

In the intervening two years siace computations for
the Stanford Couference wers msde the suthors have cont-
inued to give attention to curved ducts but, for veasous
given esrlier, to the 180° bend case.

A detailed mapping of the velocicy field dy laser
spemometry has been made at Barkeley for the curvad duct
shown ia figure 1. These dacs sud preliminary aumsrical
computations are to sppear in Chemg ot al (1983). The
present coucribution provides a more refined set of
computations of this flow snd examines the influence of
wall boundary conditions snd turbulence model on the
computed flow pattern. It also reports solutious of the
enchalpy equation thus providing predictions of the
circumfarential discridbucion of Nusselt number around
the duct perimster.

1. SUMMAXY OF NIMERICAL sCumME

Describing Differential lgFtioui
e stationary, turbulent, incompressidle flow of

fluid through s curved duct of constant rectangular
cross-section is conveniently described through conserv-
ation equations in cylindrical coordinates. With
coordinates x and r mapping the duct cross-section and
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8 the angle of progress along the duct, the descridbing
maan flov equations may be wricten:

X=aomantyn

W, e VO, e (N0, = - 2 p, ¢ (WU, - W)
-1 —
LR (l'(v(t.lr . V:) - W)r 1)

I=mousntun
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f-momentum
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conginuity
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enthalpy
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Here U,V and W are ;h! mean velocity components in the
x, r, 8 directions, u$ uv, etc. are the correspondingly
defined Reynolds sctresses, T is the ®ean temperaturs and
T the temperature fluctuation. The quantities v, o and
0 are respectively the fluid kinemstic viscosicy,
density and Prandtl number. The subscripcs x, r and @
denote partial differentiatiom with respect to the space
coordinace in quastion.

The turbulent stresses are obtained from the
Boussinesq stress-strain formula which, in cylindrical
coordinaces, implies:

LR ux-az-u; - -zvr.vr-éx

- “‘r("x + r.l‘Ue); - = vr(r(\i/r)t . r"'vs)

- WU V) )
whers, in sccordance with the k-t model

v,

- e k2
T euk /e (¢))]

k being the turbulence energy and ¢ its dissipation
rate. Thess quantities are themselves found from trans-
port equations solved simultaneously with the mesn flow
variables:
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The swpirical coefficisnts are assigned the usual values
optimised by Launder et al (1973):

e, 0.09; c‘l' 1l.44; <,

e 1.92; % - 1.0; g, * 1.22
The semi-elliptic truncacion has been applied to all
these equations in that cerms containing second deriv—
stives on 0 ars dropped.

The Difference Equations and their Solutions

Finite-difference forms of the transport equations
vere derived by integration over discretized volumes in
the flov domain following broadly Pracap's (1975)
guidelines. As is now customary, the velocity components
and pressure are stored on a staggered mesh. Screamvise
convective transport is spproximaced by upwind differences.
In the cross-sectional plane, however, both upwind and
quadratic upwind (QUICK) options are included. The
latter schems devised by Leonard (1979) has been tested
by Han et al (1981) for cturbulent flow in a driven i
cavity and found to be distinctly better than ar upwind ;
approximation. (In fact, so far as the cross-stream
components are concerned, the flow around a bend Zs very
like 8 driven cavity). The method of implementing the
scheme in the numsrical algorithm is as given by Han et
al (1981).

In che course of iceration, the sdjustments to the
pressure field in response to mass inbalancas for the ?
control volumes surrounding sach pressure node is
essancislly as proposed in the SIMPLE algorichm (Pacankar)
and Spalding, 1972) excepc thac, with the velocicy field
held on only two successive O planes, reorganizacion is
required (Pratap, 1975). At any x~y plane the U and V
velocity components are solved first. The streamwise
momsutum equation is solved next to obtain the W velocity
(displaced helf a cell down~stream as s result of the
‘staggering') using new valuss of V and U in the convect-
ive terms; finally, perturbations to the pressure field
are introduced in comjunction with re-sdjustments to
the current=nlane U=V figeld. This procedure is applied
at all planes beginning at the upstream boundary and
stepping downstream, successively overwriting 'upstream’
velocities by current values. On completing such a
pass over the domain the computation scarts over again
at the upstream end unless the residual error is small
enough that convergence is signalled.

Bacsuse the compucation as outlined above has had
to make extensive use of upstream values (rather than
current plane values) of velocity in evaluating convection
coafficients and sources, 8 certain upstresm bias is
incroduced into the solution if a purely marching treat-
msnt is followed. For this reason, as the computation
approaches its gpparemt solution, it is necessary to
introduce iteration ou che velocity components at each
step. That is to say, when current plane values have
been obtained the equations are resolved using curremt-
valuss as sppropriste in ~-forming coefficients snd
source terms. Approximately 43 passes were needed,
starting from sn assumad uniform pressure field to obtain
couverged results; this vas deemed to have been achieved
vhen the megnitude of the mess errors summed over every
call of the domain fell below 1% of the entering mass
flow., (Other studies have typically sccepted mass
arrors of 0.52 per plane which is larger by a factor of
50 then tolerated here).

The flow field generated in the duct is symmetric
sbout the mid-plsne of the cross-section lying in the
plane of the bead. Cowputations were thus extended
over just ome hslf of the duct, the cross-section being
mspped by a 15x25 interior grid for mest of the results
presented here-under with the mesh expanding mildly from
each vall, The computations began seven. hydraulic
diametars upstresm of the bend end extended 11.5
downstresa; this region was covered by a cotal of 117
streamrise planes.
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Boundary Conditions

ong the symmetry plane the gradients of all but
one of the dependent variables were set to zeroc; the
value of U, the velocity normal to this plane, was made
zero. On the three sides bounded by the duct wall, wall
functions were employed to supply appropriate near-wall
sources and sinks to the various dependent variables,
Besides the 'standard’ wall trestwent hsbitually employed
in codes developed by those sssociated with the lmperial
College school (Launder and Spalding, 1974) s wore
elaborate version originating in the present work has
been used. It is an extension of the schemes of Chieng
and Launder (1980) and Johnson and Launder (1982). 1In
relation to the present study its most significant
feature is that the wall friction opposing the secondary
motion is obtained independently of the streamvise vel~
ocity by nerforming the integration V = f(fyx/u.“)dx

betveen the wall and the first node. By contrast, the
IC wall treatmant assumes that the resultant near-wall
velocity parallel to the wall cbeys the usual logarithmic
law (the streamvise and cross=stresm vall stress comp-
onents are then obtained by resolving sppropriately).

_Flau inlet conditions are detailed in the next
section.

3. COMPUTATIONS AND EXPERIMENT COMPARED

The experimantal data providing the basis for this
comparison are those reported by Chang et al (1983) for
a duct in vhich the mean radius of the bend vas 3.35
bydraulic dismsters. The flowv entering the bend had
developed through a straight entry section of 31 D, after
being passed through a series of screens to prmtg
shear layer development. Thus, while the flow had not
becoms fully developed thers was no inviscid core
remaining wvhen the flow encountered the bend. The
experimants were taken at a bulk Reynolds number of 56700.

A parsllel experiment at UMIST is underwsy which
reproduces, s0 far as we are able to, the Berkeley teast
conditions. The apperatus dimengions are twice those of
the Berkeley rig and since air rather than water is
employed, velocities need to be increased by a factor of
8 to maintain the same Reynolds number. While the main
output from the UMIST study will be convective heat
transfer dats it has served to provide checks on an
unexpected festure of the Berkaley msasurements, At 90
around the bend their streamwise velocity profile algng
a rgdial line bad exhibited s promounced double
saximum. This feature vhile most strongly present on
the plane of symmetry was still evident alomg the line
ﬁ.dtlly between the symmetry plane and the end wall.
Figure 2 compares the laser snemcmeter profiles Taported
by Chang et al (1983) with thosa obtained with a pair of
slant hot wires at TMIST. It is seen that the double-
peak feature is present in both sets of data; indeed,
there is very satisfsctorv agreement between the two
realisations of this flow.

Computations were started, as noted, seven
hydraulic diameters upstream of the bend using, as
initial conditions the welocity gnd turbulence anergy
profiles of Melling and Whitelaw (1976). The ;urbuhacc
energy dissipation rate was assigned as: ¢ -k3 2/4% vherte
the,length scale was assigned as the smaller of
u,’cu/lo times the distance to the nearest wall or .375D,
The 'former is consistent with a mixiag length varying
a8 « timas the wall distanca; the lattar imposes a uni-
form length scale at distances greater than o.unn from
any wall, It is our view that the uncertainties 'in
inicial conditions make no significent contribution to
differsnces between experiment and computation in the
bend itself. In support of this view, experimesnts st
UMIST with a virtually fully developed flow at entry_to
the bend produced stresmrise velocity profiles at 90°
only slightly different fram those shown in fig. 2.

The computed development of the stresmwise and
radial velocity components around the bend is shown
in figures 3 snd 4. Serious discrepancies botgnn compu=
tation snd measursment quickly develop. At 43° the
predicted radial velocity on the centreline is somewhat
too lov and, as s result, the streamwise calculated
profile at this position is biased towards the inside of

the bend while in the experiment the velocity peak is
displaced somewhat towards the outer radius. (It appears
that the experimental msasurement of W_, the bulk msan
streamvise velocity, msy be too low at this position
causing 81l the messured profiles to lie above the pred-
iction; the differences in shape thst are present are not
affected by this, however). At 90 the differences are
more pronounced including the very stromg double peak

in the measured stresmwise profile and its complete
absence in the predictions. The radial velocity
profiles likewise display a sharp peak near the imner
boundary radius that is not reproduced in the computatiom.
Similar nnnnlis: are present at 1§5° (the experimental
data are at 130°) but by 180" (177 for measurements)

the streamwise profiles, at sny rate, are showing closer
agreemsnt; the secondary flow is still seriously in
errcr, however.

Clesarly somsthing starts to go quite seriously
wrocg with the simulation fairly early om in the bend and
a gvbstantially different flow pattern is computed at
90” from that msasured. In search of the cause of the
differences & number of adsptations have been considered.
The most recent calculations have benefitted from
sigrificant mesh refinement in the near-wall region
compared with an esrlier set (Johnson and Launder 1983)
yat the differences in the calculations are small compared
witk the differences betveen messurement and calculstion.
The procsdure for finding the secondary wall shear stress
seams a particular ares of veakness and 80 a test vas made
vhere the wall stresses in the x-y plane were set to zevo.
This is clearly an incorrect hypothesis but it served to
indicate whether wall stress errors could conceivably
account for the large differences. The largest °
difference between the twe practices occurs at 135 for
wvhich the primary velocity profiles are shown in figure
S. The changes produced by this step slightly improve
agreement vith experiment and along 2X/D_ = 0.5 a peak
in ¥ near the inner wall is present. Nevertheless
large differences remsin.

It is well known that the k-¢ model does not correct=
ly capture the great sensitivity of real turbulence to
snall samounts of streamline curvature. Although this
wveakness is incrinsic to the use of the Boussinesq
stress—-strain relsation, for two-dimensional curved flows
it has been found possible to imitate the effect of
curvature on turbulent shear stresses fairly well by
introducing the following term in place of the sink
-ctzczlk in the ¢ tramsport equation:

e? .
TR (1=0.2 Ri)

where Ri £ (k/cR)2W(RW), is & curvature Richardson aumber
and R is the local radius of curvature of s streamline.
This is given by
3/
rte “Wg"’"c’z“‘":‘"“:”"“’;’“;)zgt"‘ @ ao
vhere U, % uuxowyow: amd K T (U2evien) 2

In places the secondary velocity field resulting from this
oodificstion was changed by 202; the effect on the
scTemmwise velocity, however, was nowhere more than 3% and
is thus insignificant compared with the differences here
in question. This result could have been anticipated for
one could not expect an empirical 'fix' on one stress
component in s two-dimsnsionsl shear to be satisfactory
for all the stress components it a complex three-
dimensional flow.

The logical next step in improving the representation
of the Reynolds stress is the introduction of an algedbr~
aic stress model of turbulemce (ASM) in place of the
Doussinesq stress—strain relation. Models of this type
have been pi 1y ful in mimicking the
effects of curvature in two-dimensional shesrs without
the introduction of specislly tuned empirical terms
(e.3. Rodi et al, 1982), Unfortunately, svitching from
s model dbased on a turbulent viscosity to one where the
turbulent stresses enter the calculation as sources and
sinks is a severely de-stabilizing departure. At the
time of writing mo converged results have been obtained
with the QUICK treatment of comvection. With the up~
wind scheme, however, convergence has been achieved
though largely, we believe, because this approach brings
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its own false diffusion to assist stabilitcy.

Streamvise velocity profiles Sr-m from these results
sppear on figure 4 for the 90 position. The
particular form of ASM adopted is that vhich resulcs
from applying Rodi's (1976) algebraic tramsport
hypothesis to Gibson and Launder's (1978) second-moment
closure proposals. The Gibson-Launder scudy which
considered the case of flow past a single plane wvall
included terms representing the effects of pressure
reflaction from the rigid boundary. Here there are four
valls present and their effect is assumed to be accounted
for by applying a linear superposition; this extends to
three=dimensions the usual two-dimensional practice.

It is clear frow fig. 3 that the introduction of the
ASM scheme has brought no improvemsnt in accuracy,
somevhat the reverse. Based on earlier experiences
wich the k~¢ Boussinesq model artificial diffusiocs
introduced by upwind differencing modifies the
streamrise velocity typically by smounts similar to the
differencs between the curves representing ASM and k-¢
predictions in fig. 4 (snd in the sams direction). That
no improvements are recorded from adopting this higher—
level closure can only be said to be extressly perplex-
ing. It is hoped that by the time of the meeting at
vhich chis work is formally presented sn explanation
will have emsrged.

The hest transfer behaviour considered in figure 6
is that arising from using the Boussinesq k-t model.
The grestest difference between heat transfer rates on
the inside and outside of the bend initially occurs at
the centre plane. The secondary flow driving cold
fluid towards the outer wall on this plane produces
higher heat transfer levels as is typical of impinge-
ment conditions. Couversely, on the inside of the bend,
the fluid adjacent to the vall has arrived there after
travelling relatively slowly over a slightly greater
lengeh (due to the secondary motion). This fluid has
thus been haated considerably more than that near the
outer wall ngd heat transfer coafficients asre thus
lower. At 45° cthe ratio of the Nusselt number on the
two sides is 3:1, This difference diminishes with
passage around the bend as the secondary and psiury
flov pacterns becoms more complex; even at 180 however
the mean level of Nusselt number is 60% greater on the
outer than the inner wall associaced with the fact that
the faster moving fluid is located near the outer wall
(see £ig. 3): this produces ligher velocity gradients
which in turn produce higher kinetic emergy leval.

Downstream of the bend the secondary flow decays
(the meximum radial velocity is omly .02 Wy at ten
dismeters) though the Nusselt number distribution
around the duct perimster remains strongly non-umiform.
The msan level of Musselt in the bend is some 30X higher
then is found in a straight tube at the sams Nusselt
number.

4. CONCLUDING REMARKS

Experiments under identical flow conditioms ia our
two institutioas using differgnt methods of messurement
have confirmed that at the 90 position in & square-
sectioned U=bend the stresmwise velocicy displays a
secondary peak near the imner wall, Nose of our numari-
cal simulations using relstively fine mashes and the
QUICK treatmsat of convection has succeeded in mimicke
ing this important flow feacure. For the present ve
cannot offer s comvincing explenatiom for this failure:
grid refinement in che croes-sectional plane has had
lictle influence while introducing am ASM spparently
brings no benefit. There are two steps we Propose to
take thst may bdring about s marked improvement. The
first is to concentrate a far greater proportion of the
streamvise calculationsl plames in the first 90" of the
bend. (The preseat distribucion provides a virtuslly
uvaifora spacing around the bend and only sodest
variations in the upstresm and downstresm tangents).
The second will de to sbandon, on the flat valls of the
bend, the wsll-function treatmeat. Instead, & fine
sseh will be {atroduced, to allow computations to de
carried into che viscous subleyer. In this way uncert-
ainties ss to the appropriste wall boundary condition
are removed. We have found from parallel work in the
round-sectioned U-dbend that by sssuming a vadial
oquilidrium pressure discridbution acrose the viscous

and buffer regions the introduction of a very fine
near-vwall grid hes negligible effect on either convergence
rates Or storage requiremesnts.

Wich the velocity field in such relatively poor
agreement vith data over most of the bend no very defin-
itive conclusions can be drawm from the detailed hest
transfer behaviour. However, results very probably give,
in their overall pattsrn, a corract indicatiom of the
affects on hest transfer levels: i.e. at leasta 2:1 ratio
of heat transfer coefficients on the outer and inner
curved valls of the bend; a mssn level soms 30% higher
than in a straight duct and a strong non-uniformity in
Nusselt number persisting at least 10 dismsters dowe~
streanm.
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INTRODUCTION

The movement of fluid through curved pipes and bends is of
considerable practical and fundamental interest. It is well
known that in such flows secondary motions arise 1in the
cross-stream planes producing a streamwise flow pattern which may
be far removed from that found in s strajight pipe. The secondary
motions can be explained qualitatively in terms of the response
of a viscous fluid element to an imbalance between the
centripetal acceleration and the cross-stream pressure gradient
induced by lateral curvature of the main flow; see, for example,
Cuming (1957) and Johnston (1978). 1In a curved pipe, the Tesult
is a cross-stream or secondary motion carrying fluid
symmetrically along the pipe walls from the outer to the inner
line of symmetry and along the symmetry plane of the pipe from
the inner to the outer line of symmetry as shown in Figure 1,

Analysis of the equations describing laminar flow through
curved pipes shows that two parameters characterjize the flow:
the radius ratio § = a/R and the Dean number De = &2 Re, Berger et
al (1983). 1In the above definitions, a is the radius of the pipe
cross-section, R is the pipe mean radius of curvature, and Re is
the flow Reynolds number W 2a/v where W is the bulk average
velocity through the pipe and VvV is the fluid kinematic viscosity.
Since the Dean number is equal to the ratio of the square root of
the product of the inertia and centrifugal forces to the viscous
force, it provides a measure of the intensity of the secondary
flow. The radius ratio § {s a more direct measure of the
influence of pipe geometry on the flow. It affects the balance
of inertia, viscous and centrifugal forces. Berger et al (1983)
point out that the influence of & on the flow through curved
pipes is not as well understood as that of the Dean number,

Fully developed flow in curved pipes has been the subject of
extensive research, a review of the subject having recently been
made by Berger et (1983). The more complex entry flow into a
curved pipe has bdeen studied far less completely. Theoretical
attempts to solve the problem have been seriously handicapped by
8 lack of sureness in the simplifying assumptions underlying the
various analytical approaches. In addition, for fixed & and De,
the flow developing in a curved pipe is a function of the inlet
plane boundary conditions and these present some difficulties for
general values of Re; see Stewartson et al (1980) and Berger et
al (1983).

Yao and Berger (1975) and Stewartson et al (1980) have
investigated the entry flow development problem theoretically for
De >>1. In the former case, two sets of equations were derived,
one for the invisecid core flow and the other for the three-
dimensional boundary layer. At the inlet plane zero cross-stream
velocity components and a uniform axial velocity were prescribed.
Along the pipe wall zero-slip, impermeabdle conditions were
specified. A development of the Karman-Pohlhausen integral
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method was used to solve the boundary layer equations.

A set of boundary layer equations, equivalent to that of

Yao and Berger, was solved numerically by Stewartson et al, but
core-~flow/boundary-layer interactions were neglected. They also
prescribed 2zero cross-stream velocity components at the 1inlet
plane, but they followed Singh (1974) in imposing a
potential-vortex condition for the streamwise velocity component.
At any fixed streamwise location, RO, the calculation 'sequence
always advanced from ¢= 0 at the outer line of symmetry to
$ = 180° at the inner line of symmetry. Use was made of
preliminary solutions of the flow field for all ¢ when R6 = 0 and
all R6 when ¢ = 0. The Keller box scheme was used to solve
partial differential equations for the leading terms in a power
* series expansion. The coefficients in the series were obtained
serjatum and the series summed to yield ¢the preliminary

solutions.,
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Yao and Berger's solution of the boundary layer flow in a
curved pipe predicts that separation of the secondary flow or
circumferential boundary layer will take place at a streamwise
location from the inlet plane of about 0.01a(De/5)i . The width
of the separation zone, i.e. the distance between ¢ = 180° and
the point of separation, was found to increase with streamwise
location, tending asymptotically to a maximum value of S48° This
finding is in qualitative agreement with the integral solution
for fully-developed flow obtained by Barua (1963) who predicts a
secondary boundary layer separation at ¢ = 153° | but does not
accord with either the fully-developed integral solution of Ito
(1969) or the numerical studies of Collins and Dennis (1975) who
do not predict separation. In contrast, and for the first time,
Stewartson et al predict a vanishing of the sStreamwise component
of skin tr}ction on the inner line of symmetry, ¢ = n, at R9 =
0.943 a/d8“ . The position of zero shear stress represents a
singularity in their calculations since the shear stress
increases again immediately past the zero point on the inner line
of symmetry. From their study, the authors concluded that the

{ secondary boundary layers "collide" at ¢ = 180° forming a radial
ot Jet which takes fluid from the inner to the outer pipe wall
. region along the symmetry plane.

s i

& Experimental measurements obtained by Agrawal et al (1978)
’ using the laser-Doppler velocimeter technique in a transparent
curved pipe with § = 1/7 suggest that separation of the

L circumferential boundary layer, in the sense predicted by Yao and

} Berger, for example, may have, occurred by RO =z 3,46 a/Gi for :
De = 138 and by Re = 6,23 a/d* for De =z 678. The values 3,46

u and 6.23 are considerably lsrger than those suggested by either

Yao and Berger's analysis (0.12 and 0.26) or the constant 0.943
predicted by Stewartson et al for the position of zero streamwise

f shear stress. However, it is interesting to note that for their

i higher Dean number Agrawal et al observed a striking modification ]
of the secondary flow profiles measured in the region of the’ i
inside of the bend at two stations: R = 1,39 a/si and Re=2.31a/68% E
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Although the authors found it difficult to interpret their
results, they associated the phenomenon with some form of
separation.

In an effort to verify the finding of Stewartson et al,
Talbot and Wong (1982) used an electrochemical tecknique to
obtain the wall shear stress along the inner line of symmetry in
a curved pipe with & = 1/7. Measurements were made over the
range 1R8 S De € 1622, They found that the wall shear decreased
to a minimum value with increasing De, the minimum being located
at Re =0,96 a/8%2, in close agreement with the value predicted by
Stewartson et al. Upstream of the minimum the measured wall
shear stress was also in agreement with the predictions by
Stewartson et 2al, but on the downstream side substantial
discrepancies were found between measurements and predictions,
Berger et al point out that the calculations of Stewartson et al
are inaccurate beyond the singularity on the inner line of
symmetry and must be discounted: further discussion of this point
is given by Talbot and Wong (1982).

From the above it is clear that several important aspects of
developing curved pipe flow have not yet been resolved.
Analytical methods seeking to model the flow as an inviscid core
interacting with a three-dimensional boundary-layer 1lead to
asymptotiec results that are at variance with numerical
calculations of the fully-developed form of the Navier-Stokes
equations. Analytical models do not yet exist which include the
effect of boundary-layer separation on the inviscid-core flow
and, more importantly, the very existence of separation is still
an unresolved issue,

The arrival of large core digital computers has made
feasible the numerical solution of either the full or some
truncated version of the Navier-Stokes equation. Predictions of
developing laminar flows in curved pipes by three-dimensional
finite-difference procedures have been reported by Patankar et al
(1974), Rushmore (1975), Liu (1976, 1977), Humphrey (1977) and
Levy, Briley and McDonald (1983), The procedure of Patankar et
al is based on the boundary-layer equations (with a uniform
streamwise pressure gradient applied over each cross-sectional
plane) and is thus applicable only to pipes with very large
radius ratios. Levy et al also adopt a marching scheme by taking
the pressure field from a potential solution with a bulk
correction applied plane-by-plane to maintain the same mass flow
at any section, While this appears a powerful and economical
approach to apply in the early stages of development, the laminar
flow entry problem was not that of principal interest to these
workers and consequently no extensive investigation was reported,
Moreover, the approach becomes less accurate when there is strong
interaction between the viscous and non-viscous regions at high
Dean number. The other numerical studies noted ahove have bheen
bassed on discretizations of the full Navier-Stokes equations and
share in common the problem of false diffusion arising from the
use (for stability) of upwind differencing with an inevitably
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coarse mesh. AS a result flow details, such as small secondary
eddies, tend to be smeared out: none of the studies, for example,

has reported separation of the secondary flow.

The present contribution is aimed at throwing some light on
the various unresclved phenomena discussed above associated with
developing flows in pipe bends. Efforts have been made to reduce
numerical errors to unimportant levels by following Pratap and
Spalding (1975) in using a semi~- elliptic v ather than a
fully-elliptic treatment (thus permitting considerably finer
meshes than earlier studies), by adopting the third-order

‘quadratic upwind differencing of Leonard (1978) (rather than the

usual first-order upwinding) and by removing the numerical
singularity at the pipe axis. Although numerical resolution 1is
gradually lost as the Dean number is raised, the results provide
evidence of secondary flow separation - albeit very weak - for De
greater than 500. They also show the occurrence of a minimum
Streamwise wall shear stress on the inner line of symmetry. As
the Dean number 1is successively raised, the minimum value
decreases and occurs at progressively smaller values of Re&i /a
though, even at the highest value of De considered, this
dimensionless position is still approximately twice as far
downstream as predicted by Stewartson's analysis,.

During the documentation stage of the present study, the
very recent thesis of Soh (1983) came to our attention, As in
sSeveral earlier studies he has used a fully-elliptic
discretization. Despite the resultant coarseness of  his
numerical mesh, by using central differencing for convective
transport and by carefully arranging the mesh non-uniformly over
the domain, his results reproduce at least qualitatively a
secondary separation,. Comparisons are drawn with Soh's work
Wherever possible; the impression is that the differences between
his results and ours are attributable to the finer meshes that
have been possible in the present work.

SUMMARY OF THE NUMERICAL SOLUTION PROCEDURE AND BOUNDARY
CONDITIONS

The equations describing the development of a viscous fluid
in a toroidal duct such as shown in Figure 1 may be written

Continuity
a—%rcv + %_rrcv-r -:-erw-o
(1)
Momentum
P(E) + Sc(¥) = DW) + S,() + 5 (¥)
(2)




In equation (1) U, V and W denote velocity components in the
circumferential (¢ ), radial (r) and streamwise directions (98)
respectively, r. = R +« acos¢ is the local radius from the centre
of the bend, while in equation (2), ¢ stands for any of the
velocity components, the associated source and sink terms being
given in Table 2.1. The operators C(y) and D(y) are defined by

-1
) = (rr) [%(rcuw) S AGADE aiecrww)] o
N S U W S0 IR T
D(y) = (rrc) [; a¢[rc“a¢ ] + ar[rrcu i%ﬂ %)

We note from eq (U4) that second-derivatives with respect tob
are omitted, In consonance with this form of the describing
equations a 'semi-elliptic! finite-volume discretization is
adopted, a description applied to a solution where only the
pressure field is treated as elliptiec. The pressure thus
requires storing over the whole domain, In contrast, the
velocity components are solved in a marching fashion and thus
require values to be held only on two adjacent r-¢ planes of
nodes, This type of solution procedure, first introduced by
Pratap and Spalding (1975), is particularly attractive (in
three-dimensional flows for then the savings in memory required
for the velocity components (compared with a fully elliptic
solution) may allow a sufficiently fine mesh to be used for the
pressure field to reduce numerical errors to unimportant levels.
The present numerical procedure has broadly followed the strategy
of Pratap and Spalding, but several differences in discretization
and organization have been introduced to improve the numerical
accuracy of the results, Quadratic upstream interpolation
(Leonard, 1979) is used to approximate convective transport in
the cross-sectional plane of the duct following the conclusions
of Huang et al (1983) that this was overall the most accurate of
the simple treatments of convection (see also Han et al, 1980).
The pressure/continuity connection is applied by way of
Patankar's (1980) SIMPLER algorithm; in preliminary tests this
was found to give convergence rates an order of magnitude faster
than the earlier and very widely used pressure-correction scheme
SIMPLE, Patankar and Spalding (1972).

In the original semi-elliptic scheme of Pratap and Spalding
(1975) no in-plane iterations were made on the velocity field and
thus, of necessity, coefficients of the difference equations were
based entirely on upstream information. Although economical,
this practice proved to be inadequate in the present study which
has 1ncgpded tighter bends than those examined by Pratap and
Spalding and where, as a result, streamwise variations are more
rapid. As the pressure field, which was iterated by repeated
streamwise sweeps over the solution domain, approached
convergence, first one and finally two in-plane iterations on the
velocity field were made with all coefficients being re-evaluated

t The Pratap-Spalding study was confined to square sectioned bends
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using the current plane information,

At the highest Dean numbers a significant economy in the
memory required at any cross-sectional plane was achieved by
assuming that the static pressure within a thin annular ring
adjacent to the pipe wall was obtainable from radial momentum
equilibrium. Within this sub-region, which extended from the
wall to 0.9a, the pressure was obtained from the following
degenerate form of the radial momentum equation:

1 3p _chos¢+_l1_2
o or r r _ (5)

while the radial velocity V was obtained from the continuity
equation, (4), This parabolic sublayer treatment (PSL) was
originally developed to facilitate the study of complex
turbulent flows (Jacovides and Launder, 1984) but it has also
proved helpful for the flows examined here since, at entry to the
solution domain, the boundary layer is extremely thin and a fine
near-wall mesh is inevitably required.

There is no intrinsic need for a particularly fine mesh at
the pipe centre. Most earlier numerical treatments, however,
have put radial gradients of all dependent variables to zero at
r = 0 and to keep the harmful consequences of this clearly
incorrect prescription to unimportant levels, a refined grid has
been needed in the vicinity of r = 0. The central difficulty is
that at r = 0 (J = 1) there are many coincident nodes each
corresponding to a different circumferential angle ¢ (I). In the
present study, to improve the pattern of node distribution, the
following reformulation has been adopted. For the streamwise
velocity component, W, the same value has been assigned to all
these coincident centre nodes (W(I,1)), this value being the
average value of W over the surrounding nodes:

NI-1
WI,1) = }: W(I,2)/(NI-2)
I=2

where Iz2 andI= (NI-1) correspond with O and x radians respectively,
The U and V components, however, cannot take the same value at
the centre., Instead, it is required that the resultant of U(I,1)
and V(I,1) should produce the same velocity vector irrespective
of the circumferential 1location., Now this resultant velocity
must lie on the symmetry axis: its value V... is obtained as the
mean of the radial velocity components on ¢ =0 and ¢ = n on
either side of the centre nodetl The U and V velocity components
for other values of ¢ are then obtained as

In fact, Vres is the average of V on ¢ = 0 and the negative of that on ¢ =r




U(I,1) = Vres sin¢ ; V(I,1) = vres cos ¢

At the tube wall all three velocity components are set to
zero. At the inlet plane the streamwise velocity and pressure
are assigned as uniform over the plane while the other velocity
components are set to zero. At the o =180° plane no constraints are
required on the velocity components (which are treated in a
boundary-layer fashion) while the streamwise pressure gradient
has been set uniform over the section at a level needed to
satisfy continuity. This latter condition, while not in accord
with the actual pressure gradient at 180° (which is affected by
bend-exit effects) has been found to affect the flow pattern only
within 20° of the exit (for 8 = 1/7). None of the comparisons
drawn below relates to a position in the bend greater than 160°
from the entry.

A number of computations reported below have been repeated
several times with different distributions of nodes in the three
co-ordinate directions and with a progressive mesh refinement.
The standard mesh density employed was 20 (radial) x 20 (circum-
ferential,¢) x 150 (axial, ) for the pressurep, and for the
velocities 28 x 20 x 2. The difference in the number of radial
nodes for the velocity and pressure fields arises from the fact
that in the 'parabolic sublayer' pressure nodes are not required
but velocity nodes are,.

The computations have been made on a CDC7600 computer at the
University of Manchester Regional Computing Centre. Central
processor time required to proceed from a uniform guessed initial
pressure field to a final converged state where residual mass
errors summed over the entire domain were below 0.1% of the
entering mass flow ranged froml0OQ00s.for De = 138 to 250008.for De =
2712 for § = 1/7,

PRESENTATION AND DISCUSSION OF RESULTS

Comparison is drawn first with two experiments reported by
Agrawal et al (1978), one in a bend with 8 = 1/7 at a Dean number
of 183 (Re =z 484) and the other with &8 =z 1/20 and De = 565
(Re = 2530). In the experiments, the bend was preceded by a
bell-mouth entry: the computer simulation began with a uniform
streamvwise velocityoand zero secondary velocities at the entry
plane to the bend (0 ). It will be seen later from a comparison
with wall stresses that the unavoidable mismatch between the
experimental and computational starting profiles leads to a lag
in the computation by approximately 5° of are in the case of

§ = 1/7. Streamwise velocity profiles at representative
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stations .- 2 shown for these two flows in Figures 2 and 3. Due
to the difference in refractive index between the perspex pipe
and the glycerine-water mixture which provided the working fluid,
experimental velocity traverses were made along the non-parallel
lines 1indicated in the figures. The numerical data were
interpolated to extract velocities along the same lines.

Near the bend entry the potential vortex is clearly evident
in each case. For the lower Reynolds number there is some
indication that the measured boundary layer is a little thicker
than the computed, in part due to neglect in the computations of
any boundary layer at the entry plane, As the shear flow
develops around the bend, the secondary motion displaces the
velocity maximum to the outside of the bend and, in the case of
the higher Dean number, producing double velocity maxima along
sSome lines. The computations and the experiments generally
produce a strikingly similar behaviour. The somewhat smaller
distortion of the computed profiles at De = 183 and L/R = 7.3%
(where L is the distance from the bend entry measured along the
circular path through the pipe centre) compared with experiment
is, we believe, probadbly due to the thinner computational inlet
boundary layer. Other small differences that a close examination
reveals are probably attributable to the uncertainty in the
measured Reynolds number of *8%.

The secondary flow data reported by Agrawal et al (1978)
were in fact obtained later than the streamwise velocities and at
different Dean numbers, 138 and 678. Figures 4 and S5 draw
comparisons between the measured profiles and the corresponding
numerical results. In each case, the secondary flow carries
fluid from,K the outside to the inside of the bend near the wall
with a slow return flow over the remainder of the cross-section,
At the higher Dean number (or rather, Reynolds number) the
near-wall current is confined closer to the wall due to the
thinner streamwise boundary layer and the return flow pattern {is
noticeably more complex near the inside of the bend.* The
numerical computations mirror the experimental data reasonably
well but not, it must be acknowledged, as well as in the case of
the streamwise profiles discussed above. The predicted near-wall
outer-to-inner flow s thicker ¢than that measured. This
superficially might appear to arise from numerical diffusion but
the QUICK scheme adopted for convection is accurate up to third
order and does not suffer from the severe numerical smearing to
which upwind differencing is prone. Moreover, grid refinement
produced negligible changes in the results at these Dean numbers.,
The question thus arose whether the experimental Dean number
could have been different from that reported. Without claiming
to answer that question it is at least of interest to notice that
in Figure 5 the computed secondary flows at a Dean number twice
that reported experimentally are in significantly closer accord
with the experiment than the reported value of 678. At this
higher Dean number the secondary profiles reflect the weakening
of fluid viscosity through the sppearance of secondary maxima and
minima along a number of traverse lines near the inside of the
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bend. Indeed, the computations at De = 1356 indicate in Figure
Sc a reversal of the direction of secondary flow on thﬁ_symmetry
plane implying the formation of a counter rotating eddy'. In the
experiments the secondary velocity on the axis is reduced almost
to zero along two traverse lines in Figure 5c¢ but does not
actually reverse. It may be noted, however, that the measured
secondary velocities appear to suffer from a 'rightward' bias,
That is to say, the secondary flow profiles indicate a mass flow
rate to the right that is from 2 to 6 times larger than that to
the left. If the flow were fully developed in the axial
direction, continuity would require precisely the same rightward
and leftward flow rates along every line drawn from the boundary
to the symmetric plane. Now, the fact that the predicted
secondary profiles do indicate, rather closely, such a balance
suggests that the effects of changes of W in the axial direction
do not make a major contribution. It is thus difficult not to
conclude that the experiments, for whatever reason, have given a
spurious augmentation of the secondary velocity towards the
outside of the bend. Thus it seems probable that the actual flow
does indeed exhibit a secondary flow reversal on the. axis,
Although the computations - even those at De = 1356 - do not

quite show the roller-coaster appearance of the experimental-

profiles, in view of the above discussion the agreement is
probably satisfactory. Agrawal et al (1978) speculated that
'separation' of the secondary flow may have occurred at their
data collection point closest to the inside of the bend. In
fact, though one cannot distinguish it in the figure, the
computed wall-adjacent velocities at this position do take very
small negative values as may be inferred from the variation of
circumferential shear stress in Figure 12,

A clearer impression of the secondary flow pattern is
perhaps conveyed in Figures 6 and 7 which show secondary flow
'vectors' at different axial stations for two values of De. At a
Dean number of 138 the patterm of the secondary flow streamlines
changes little as the flow develops around the bend but the
magnitude of the secondary velocities in different regions
changes considerably, the maximum levels being reached at about 6
radii into the bend (50°), At De =z 678 the initial simple
cellular pattern evolves into a kidney shape by 12,8 radii
downstream with very rapid spatial variations in magnitude and
direction of the secondary flow. In marked contrast with the
situation {n Figure 7b, the secondary velocities on the
centreplane are nearly zero. Soh (1983) reports a qualitatively
similar behavious at this Dean number. The behaviour for a Dean
number of 1356 (not shown) is similar to that at 67R except that
the principal return flow is squeezed somewhat closer to the pipe

+ . .
It is interesting to note that Azzola and Humphrey (1984) have measured

such a counter rotating eddy near the symmetry plane for twurbulent flow
in a 180° bend




boundary leaving a larger core with virtually no secondary
motion.

It is of interest to return briefly to the streamwise
velocity component to observe how its isovels are distorted by
the secondary flow field. Figure 8 presents measured and
predicted contours for a Dean number of 565 at 83 from the bend
entry. Soh (1983) provides computed results for this flow
condition at the same location and his predictions are included
in the figure. The contour plots convey a clear impression of
how the secondary flow (similar to that shown in Figure 6¢c) pulls
out the axial contours as fluid flows along the walls from the
outside to the inside of the bend. Because the bulk of the
return flow also takes place along the periphery of the pipe,
however, the profiles are folded back on themselves forming
hook=-1ike contours or "fingers", The present numerical results
mimic closely the measurements save that the computed fingers are
a little wider. Soh's coarse grid calculations yield contours
for W/W equal to 1.2 and 1.4 enclosing smaller regions of the
flow than either the measurements or the present calculations:
the main features of the flow are nevertheless quite well
predicted.

Figures 9-12 relate to the distributions of wall shear
stress around the inside of the bend, a topic that has been the
main concern in the papers by Stewartson et al (1980) and Talbot
and Wong (1982). Figure 9 shows the development of the axial
wall shear stress along the inner line of symmetry at four Dean
numbers; also included is the behaviour predicted by Stewartson
et al. As discussed in the Introduction, the analysis devefoped
by these workers gives a vanishing shear stress at Z = 6(R/a)? =
0.943 which represents a point of singularity in the solution
since immediately downstream therefrom the shear stress rises
sharply then approaches monotonically an asymptotic value,
Stewartson et al comment that their analysis is strictly
applicable only for very small values of & and for De >> 1,
Certainly, as the Dean number is successively raised the present
numerical results shift Zn the direction of that limit, f.e, the
minimum dimensionless wall shear rate falls as De increases and
the minimum value occurs at progressively smaller values of 2
(though even at De =z 2712 the minimum is reached about twice as
far downstream as the predicted singular point), Downstream of
the minimum, the numerical solutions display a damped oscillatory
behaviour, the amplitude growing as the Dean number is raised.
This behaviour is evidently in striking contrast with
Stewartson's result, yet is at least in qualitative agreement
with the inviscid analysis of Hawthorne (1951),

It would have been interesting to extend the numerical
results to higher Dean numbers but this was not feasidle since to
achieve sensible grid independence for larger De than those
reported would have required finer meshes - and thus more
in-~core storage than was available to us. It is of interest to




note the effect of grid refinement on the present solutions.
Figure 10 shows results obtained for the three highest Dean
numbers with the standard 20 x 28 x 150 grid and with a coarser
version: 20 x 20 x 100. At Dean numbers of 678 and 1356 the
changes in shear stress arising from grid refinement are rather
small and the trend is generally to raise the shear stress
slightly. The change is more substantial at the highest Dean
number, the minimum shear stress being raised by a factor of 3.
It is ironic that for this last case the coarser grid gives a
behaviour up to the position of minimum shear stress much closer
to that predicted by the analysis of Stewartson et al.
Nevertheless, the finer grid solution brings the behaviour at
this highest Dean number much more into line with the numerical
results at lower values of De,

The conclusion that the solution of Stewartson et al did not
adequately describe the flow downstream of the singularity was
originally drawn by Talbot and Wong (1982) on the basis of
experimental shear stress data obtained by an electrolytic
method. Comparisons with these measurements are shown in Figure
11 where the present computational curves are all displaced to
the left a dimensionless distance 0.2 (corresponding to u.3° of
arc), an arbitrary adjustment to try and account for the effects
of the inlet contraction. For De = 678 the computed curve
corresponding to the streamwise wall stress at 87/9 is also
included to allow comparison with the*resultant stress along this
line measured by Choi et al (1979) . Agreement between the
experimental and numerical results is somewhat mixed, At a Dean
number of 183 the computed values are some 20% below the data,
while at the higher Dean numbers the cluster of data points
around Z = 1.0 give substantially lower values than predicted.
It is hard to ascribe a level of accuracy to the experiments:
the calibration curve from Talbot and Wong suggests that the
stress levels are systematically low by an amount ranging from
15-25% depending on the surface strain rate, though no estimates
of other uncertainties are provided. Apart from the case of the
lowest Dean number the impression conveyed by the data seems to
be that they scatter about the numerical predictions rather than
display conclusive differences. Talbot and Wong inferred from &
comparison of their measurement with those at 87/9 from Choi et
al (1979) that the circumferential wall shear stress at this
position was much smaller than the streamwise stress - a
conclusion which conflicted with the predicted behaviour of
Stewartson et al, The present study provides strong support for
Talbot and Wong's conclusion, The circumferential stress along
87/9, shown in Figure 12, is an order of magnitude smaller than
the streamwise component except in the vicinity of its maximum

Because the circumferential stress at this position is small compared with

the axial stress, the resultant stress does not differ from the axial value

-by more than 1%
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value, We note that the streamwise varjiation of this component
is essentially independent of NDean number as far as Z = 1,5.
Moreover, weakly negative values of circumferential shear stress

occur for De = 78 in the range 2.,7sZs4.fR and for De = 1356 in
the range 3,7s52Zs5.4, At the highest Dean number the secondary
shear stress remains positive, though close to zero for Z> 4, It
ought to be said that this last result is not conclusively
established since it is possible that a further major grid
refinement, while producing negligible changes to the streamwise
or secondary velocity field, could nevertheless change the
circumferential stress from a very weak negative value to an
equally weak positive value - or vice versa.

CONCLUSIONS

Careful numerical solutions have been obtained of several
laminar flows developing in 180° bends of cirecular cross-section
that have been the subject of laser Doppler studies by Talbot and
his colleagues. Given the small but wunquantifiable mismatch
between the computational and the experimental entry conditions,
agreement between computed and measured streamwise profiles for
Dean numbers of 183 and 5§65 are in extremely close agreement,
There is less complete agreement with the secondary velocity
profiles and one possibility, that would be consistent with the
present results, would be that the experimental data (which were
obtained in a separate study from the streamwise profiles) were
at a higher Dean number than reported.

The present computational results indicate a gradual
approach towards the initial-region behaviour predicted by
Stewartson et al (1980) as the Dean number is raised. Even at a
Dean number of 2712, however, there are still marked differences
from Stewartson's solution, Downstream of the point of minimum
shear stress on the inside wall the numerical results indicate an
oscillatory development of the streamwise wall stress, the
overshoot increasing as the Dean number is raised. This
behaviour, which 1is at 1least in qualitative agreement with the
data of Talbot and Wong (1982), and inviscid flow calculations of
the secondary flow by Hawthorne (1951), is in striking contrast
with the predictions of Stewartson et al (1980) which show a
monotonic approach to steady state conditions.
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Figure 1  The configuration considered and the describing coordinates
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Figure 2 Streamwise velocity profiles along lines 1-5

Right hand figures: experiments Agrawal et al (1978)
Left hand figures: present computations
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Figure 3

Fig; 3a
Streamwise velocity profiles along lines 1-5
experiments Agrawal et al (1978)

Left hand figures: present computations
De = 683; R/a =20
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Fig. 4 Secondary veloecity profiles
Right hand figures: experiments Agrawal et al (1978)

Left hand figures: present computations
De = 138 R/a =7
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Figure 5 Secondary velocity profiles
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Right hand figures: present computations, De = 678
Left hand figures: present computations, De = 1360
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Fig. 6 Secondary velocity vector plots
' De =138 RC/a = 7.0




e i BEE PR eam

e

Fig, 7

Fig. 7¢ L/a = 12,81

Fig. 7b L/a = 6.11

— —— ey  — -~ - - - -

Fig. 7a L/a = 3,67

Secondary velocity vector plots

De = 678 RC/a = 7.0

s ks

4,

kit da i




Fig. 8

Present predictions
= = = = Talbot et al (experiment)

FPig. 8a

Fig. 8

emmmmme  Soh (predictions)
- « = =~ Tglbot et al (experiment)

Streamwise velocity comtours
De = 565 R/a = 20.0
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%?he Computation of Momentum and Heat Transport in

ETurbulent Flow around Pipe Bends

’H. Iacovides and B.E. Launder

A numerical solving procedure is described based on a semi-
elliptic discretization of the averaged equations of motion
describing turbulent flow through curved circular-sectioned
tuwbes. It adopts Leonard's QUICK treatment of convection
and Patankar's SIMPLER algorithm for handling the pressure-
velocity connection. Applications are reported of laminar
and turbulent flow in a 90° bend (adopting, in the latter
case, the standard k~e Boussinesq viscosity model for the
Reynolds stresses)., Solutions of the thermal enercqv
equation for this case indicate a marked rise in the averace
heat transfer cocefficient at any section but with a five-
igég'wndatnulinlhzhetmaaxthe inside and outside of the

1. Introduction . ) l

Turbulent flow around pipe bends is a common feature of heat
,exchangets, condensers, boilers and other heat-transfer equipment.
{Such flows also arise in the internal cooling passages of various
components of power generation equipment from gas turbine blades
to the rotating cores of electrical generators. Besides the very
complex three-dimensional flow that occurs in the bend .tself, the
secondary flow generated in the bhend can carry over to have an
appreciable effect on the velocity and temperature fields many
diameters downstream. ‘
i

Despite the importance of. the flow, little is known of the
detailed structure in the turbulent flow regime. For the most
part, studies have reported overall pressure-loss coefficients for
‘bends of different angles and different ratios of pipe diameter to
bend radius. Exceptions are the measurements of mean velocity by
Rowe (1970) in a rather gentle 180 bend and the recent experiment
‘of Enayet, Gibson, Taylor and Yianneskis (1982) which reports the
,development of the mean and rms turbulent streamwise velocities
:around a 'tight' 90° bend (pipe diameter: mean radius of curvature
= 2.8:1). There are no local heat transfer data available, so far
as we know, in the development region of a circular sectioned
pipe, though a joint programme of experiments on both the flow and
‘thermal fields is now in progress at UMIST and the University of
California, Berkeley (Professor J.A.C. Humphrey).

- . . em—————n g aw o e e . — . -y —. e

i
|
The advance in speed and core capacity of computers, coupled
'with improvements in numerical methods for solving the fluid flow
.equations, make it feasible to undertake computer simulations of
three-dimensional flows; these can provide far more detail of the
,velocity and thermal fields than could any experimental
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‘f'tealization of "the "same flow. Whether or not the resulting

calculations provide 2 close approximation of the real flow
depends on how small the computor has been able to keep his
numerical error and on how well the unknown turbulent momentum and’
heat fluxes are represented by the ‘'turbulence model' adopted. In
the case of developing turbulent flow around pipe bends, the first
computations were reported by Pratap and Spalding (1975). The
paper introduced a novel simplification: of the full
three-dimensional Navier Stokes equations in that, while the fully
elliptic form of the pressure equation was retained, a parabolic
itruncation was adopted for the velocity field wherein streamwise
momentum diffusion was omitted. This simplification allowed the
velocity field to be stored on only two adjacent streamwise planes
instead of over the whole domain. The savings in core that such
semi-elliptic schemes allow enables a far finer mesh to be
employed for the pressure field (which must be stored over the
full domain) than would otherwise be possible. Pratap and
Spalding (1975) achieved moderately good agreement in their
simulation of Rowe's (1970) experiment, though some of the
features of their original calculation method are unsuitable for
computing the practically far more important case of flow.around
sharp bends with R/d in the range 2-4. ' i
1

Perhaps the most serious limitation of the Pratap-Spalding‘

scheme for such flows is their use of "wall functions" (c.f.
Launder and Spalding, 1974), based on experimental data for plane
two-dimensional turbulent flows, to provide the near-wall boundary
conditions on the velocity field. This approach provides an
'unreliable basis for fixing the secondary velocity parallel to the
wall and it is difficult to conclude other than that the only
satisfactory treatment is to carry the integration to the wall.
Fhis approach has been adopted by McDhonald's group (McDonald,
9982) in computing turbulent flow around a 90° bend of square
cross section as part of their contribution to the 1981 Stanford
Conference on Complex Turbulent Flows (Kline et al, 1982). The
Fesults of this computation, while, overall, not superior to those
of other submissions, did nevertheless give a more accurate
ccount of the development in the first 30° of the bend where

there is a strong secondary flow confined very close to the wall
carrying fluid from the outside to the inside of the bend. The
pumetical procedure developed by McDonald's group obtains the
ressure distribution as a one-dimensional correction to a

potential flow. This simple approach works very well when the
boundary layers are thin but_appears to be a major factor in the
deterioration in their predictions of the square bend experiment
beyond 4509, A further potential source of error is the use of
the very simple mixing-length hypothesis to compute the Reynolds
Ptresses. The scheme entirely neglects transport effects on’
turbulence; moreover, as Levy et al (1983) comment, the
btescription of a boundary-layer thickness - required to fix the
mixing length - becomes arbitrary in such a three-dimensional.
low. !

{

The present contribution reports our attempts at achieving a
ore satisfactory numerical and physical computational model of

turbulent flow around bends than has hitherto been reported. We
adopt, following Pratap and Spalding (1975), a semi-elliptic:
approach though, like Levy et al (1983), we eschew the use of wall
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I functions and instead extend the computations to the pipe wall
using, in the low-Reynolds-number sub-layer, the van Driest (195A)
version of the mixing length hypothesis. In the main flow,
however, the k~e¢ Boussinesq viscosity model is adopted to allow
some account to be taken of transport effects on turbulence. i

Extensive comparisons are drawn with the laminar and turbulent
flow data of Enayet et al (1982) in a 90° hend. We report also
the computed behaviour for the thermal field for this geometry.
Finally, comparisons are drawn with the Seban and McLaughlin
(1963) measurements of local Nusselt number in fully developed
flow through coiled tubes. 7

2.1 The Describing Equations and Boundary Conditions

i
|
2. Summary of the Computational Procedure l
|

The flow is analysed in the toroidal, r, #, 8 system shown in
figure 1. If we adopt the Boussinesq turbulent viscosity
concept to represent the momentum and heat fluxes due to the
turbulent motion, the describing continuity, momentum -and-
energy equations may be written as follows:- !

Continuity
: (2.1)
Momentum and Energy
p(C(y) + §.(¥)) = DY) + S, (¥) + S (¥)
P (2.2)

In equation (2.1) U, V and W denote the velocity components in
the @, r,8directions, reis the local radius from the centre of the
bend (R +rcos6 ), while in equation (2.2) ¢ stands for any of the
velocity components or the temperature. The associated source and
sink terms are given in Table 2.1 and the operators C( ¢) and D
(v) denote: !

i
i
c) (1::L-¢)"1|:a-3—(o r Uy) + %(rrcw) + %é-(rww)] !

' - 3 2
"D(¥) (rrc)l}g (r (5 +-§;)% + s (rr (L * &_t)%):l

The quantity oV is unity in all but the energy equation where it
denotes the molecular Prandtl number of the fluid. Motice that
second derivatives with respect to @ are dropped, an essential
feature of semi-elliptic treatments. Where computations are to e
made in straight approach sections of the pipe or in downstream
‘tangents, the mean radius of curvature R is set to some suitably
large value in these regions. '
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Table 2.1 Source and diffusion terms in mean flow equations
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‘Calculationsare made over the semi-circular half cross
section bounded by the diametral plane of symmetry passing through
the centre of the pipe bend. The velocity normal to that plane 1s
set to zero, while the gradients of W and V normal to the plane are
zero. Along the pipe wall no-slip conditions are applied. The
velocity components and pressure are all prescribed at entry to
the flow domain while at exit the second derivative of the static
pressure in the streamwise direction is set to zero; the velocity
and energy equations are only first order in & and no outleq
boundary condition is required.

As described in detail elsewhere (Launder, Johnson and
Tacovides, 1983; Humphrey, Iacovides and Launder, 1984) a new
treatment of the U and VvV boundary condition at the tube axis has
been evolved in this work that removes the usual singularity
problem. The need for special care arises because the axis
coincides with the location ofmmy U and V nodes each corresponding
to different values of the co-ordinate® . Now, since the nodes in
question lie at the symmetry plane, we know that for every such
node the resultant velocity in the plane of the cross section must
be the same and directed along the symmetry plane - since as noted
in §2.1. there can be no velocity component normal to this Plane.
We thus conclude that: |

u(I,l) = Vieeg 8in@(D)

v(I,1) = Vees €08 90(D) @. S);
where V.., is the average radially directed velocxty at the ax1s,
1 Olgag™ Vgan): |

Application of these conditions has removed the need for a
very small near-axis cell adopted in earlier treatments (e.g. Levy
et al, 1983).

:
I

2.2 The Turbulence Model

1

Although in the future the authors aim to include a model of
turbulence based on closure of the stress and heat-flux transport
equations, the present computations all adopt the Boussinesg
concept of an isotropic turbulent viscosity u in the momentum
equations oy, is unity, while in the energy equ§txon it represents
the turbulent Prandtl number and is assigned the uniform value
0.9.

It cannot be said in advance how serious the undoubted
conceptual weakness of such an approach will 'in fact prove to be.
It seemed desirable to us to adopt this simple hypothesis
initially since its use facilitates the numerical solution of the
describing equations; moreoever, it will be desirable to have a
'‘baseline’ prediction avajilable against which to judge
computations to be obtained later with more elaborate models of.

From the wall extending to a radius of 0.94g - 0.96awhere a

is the pipe radius, the turbulent viscosity is given by the mixing
length hypothesis (Prandtl, 1076) extended to three-dimensional

e =i m—— @t = e -

e = amem " = ———- m————-e oo o eaS—

the turbulence field. ' |
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‘[EIoWs™by™ requinng ‘consistency with the local equilibrium form of

the turbulent kinetic energy equation. In the near-wall zone,
gradients with respect to r far outweigh other terms and so:

b = o () - (32~ 97

The mixing length L, is given by van Driest's (1956) proposal

(2.6)’

]

that

L= xy(2 - exp - yU_/26v) _ (2, 7)-'
where y is the distance from the wall (z-r) and u, is the frictxon
velocity based on the resultant wall shear stress. The von Karman
constant K takes the value of (0.419.

Over the main region of flow the turbulent viscosity is
obtained from the standard high Reynolds number version of the k~¢
Boussinesq viscosity model (Jones and Launder, 1972, Launder and
Spalding, 1974) wherein . : :

"

- 2 ) A

¢, PK /e . '8)5
and the turbulent kinetic energy k and its rate of dissipation
:are found from the solution of transport equations of the same
type as equation (2.2) in which the source/sink terms take the
following form: ?

t

|
¥ 5.V §4(¥ SP(W) 3
i
k o u G - Pe
€ 0 c1e .G - c_pe?
: B Pt 2

‘where G

)2 1 W VcosG‘-Usin¢]2 [1 LU ]2
2[3:] * 2( 90 T, * 2z E

+

W _ Weos® ﬂ2+[lav+_a_g_22
r T, rcae \rw r

tEw®

The empirical coefficients appearing in the k and ¢
equations take the following standard values:
(:‘l = ,09; Cl = 1,44; (:2 = 1,90; o = 1.0; 9. = 1,22

1 aw 1 3 WsmO]
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At the interface with the mixing length hypothesxs, “the values
of kK and ¢ are fixed by requiring that the viscosity given by
equations (2.6) and (2.8R) should be the same and by taking the
turbulent length scale 2(3k¥2/¢) equal to t /cy¥% as in a simply
sheared, equilibrium, near-wall flow. The "resultant expressions:
are

- ul V2 .2, - e L2
k = ug /cu 23 € cuk /ut

where ¥ ., is the value of turbulent viscosity given by eq (2.A).

2.3 Discretization

The present computational procedure has taken as its starting
point a code for solving the fully-elliptic laminar flow equations
in toroidal co-ordinates kindly provided by Professor J.A.C.
Humphrey (Humphrey, 1277). =~ This had been developed within the
framework of the well-known TEACH family of computer programs.

differential equations presented in §2.1 and §7.? are discretized
by integrating them over small contiguous control volumes which
together cover the whole flow domain. To each control value is
attached a discrete value of the dependent variable. A staggered
arrangement of grid nodes is adopted with velocity components
located at the boundaries of the control volumes for the scalar
variables (p,T,k and € )., We retain the usual TEACH practice of
assuming a linear variation of dependent variable between nodes in
Pvaluating diffusion processes while treating source and sink
terms as uniform over each control volume with a value equal to
that at the node.

In the treatment of convection, the upwind/central hybrid
differencing normally incorporated in TEACH is retained only for
the streamwise velocity component W. For the components in the
plane of the cross section, the more accurate quadratic upwind
interpolation (Leonard, 1979) has been incorporated. (See Han et
al, 1981 and Huang et al, 1983 for a comparison of the performance
of quadratic and hybrid differencing). :
1

Pratap and Spalding (1975) adopted the SIMPLE procedure
(Patankar and Spalding, 1972) for use in their semi-elliptic
computations. We have found, however, that the newer scheme
‘SIMPLER (Patankar, 1980) produced rates of convergence an order of
hqqnitude faster. The original pressure-velocity iteration
sequence has had to be modified somewhat to allow it to fit
compatibly within the present semi-elliptic treatment with only
the pressure available in three-dimensional storage: (i) The
solution begins with a guessed initial pressure field starting
from the initial (upstream) plane and marching plane by plane
downstream., At each step with the pressure field fixed, the U and
V momentum equations are first solved on a plane followed by that
for the W velocity (located one half cell downstream). (ii) The
velocity field 1is next corrected by way of the standard

pressure-correction equation in order to satisfy continuity.
'(111) The current plane pressure field is then updated by solving

.ithe_Poisson equation_for pressure over_the_plane using the updated

Like other finite-volume, prxmitlve variable procedures, the-

YT
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“fvelocities. ~ ~~ (iv) The current plane velocity field |is
re-calculated using the updated pressure field, (v) The current
plane velocities and the pressure field on all downstream planes
are adjusted by way of the Pratap-Spalding bulk pressure
correction to ensure that the prescribed mass flow rate is passing
that section. (vi) The <current plane velocity field |is
re-corrected via the pressure-correction equation. (vii) For
turbulent flow, the turbulent kinetic energy and dissipation rate
are solved and the turbulent viscosity is updated.

The above steps are repeated at each succeeding plane and,
when a complete downstream sweep has been completed, the sequence
begins over again at the upstream plane unless the solution has

3

fully converged. 'l

As the calculation approaches convergence, first one and
later two iterations are introduced at each plane in solving the
momentum equations in order to re-form coefficients and source
terms in terms of current plane values. (When marching without
iteration, one necessarily has to evaluate these quantities from
upstream values). Although, apparently, Pratap and Spalding
{1975) did not incorporate such iterations into their
computations, the bend flows considered in their study were far
milder than those of the present study and thus streamwise
variations were less rapid.

Within a thin annular ring extending from the wall to 0.(0%
a much simpler and economical numerical procedure has been adopted
in our most recent calculations. The region is treated as a
parabolic sublayer (PSL), lacovides and Launder (19¢R4) in which,
'for a given 9 and 8, the pressure at any point in the sublayer
above that at the first node outside the sublayer is obtained by
assuming radial equilibrium. Thus, no pressure nodes are required
in the PSL, a feature that allows the use of a fine near-wall mesh
for the velocity field without prohibitive core demands (the
pressure, it will be recalled, is the only variable for which
three-dimensional storage is needed). A further simplification is
that the radial momentum equation is not solved, the V velocities
being obtained directly by application of continuity to the

control volume surrounding the pressure node. |

[ S

3. Numerical Results

The computations reported below have been obtained on UMRCC's
CDC7600 computer with meshes sufficiently fine that purely
numerical errors are believed to be of minor importance. There ' !
is little scope for establishing grid-independence of three-

imensional flows by successive mesh refinement with a computer of
this size and accordingly our attention is directed first at the.
aminar flow results of Enayet et al ()9R3) for R/D = 2. at a

eynolds number of 1093. The computed results have been obtained

ith 20 nodes in the radial (r) and circumferential (€) directions
tnd with 100 streamwise planes, 70 of which are in the 2n° bend
htself and the remainder in the approach and downstream tangents.
A preliminary run was made of developing flow in a straight pipe,
the flow being allowed to develop until best agreement was
Pbtained with the 90° bend data at the station 0.58 diameters

e —— - —
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upstream of the bend. - The computed profiles obtained in that run
‘2.4 diameters upstream of that position were then used as the
starting profiles in the calculation proper (i.e. at a position 3
diameters ahead of the 90° bend). ‘

L

§ "The development of the measured and computed axial velocity
profiles is shown 1in figure 2 at three stations, Due to :
differences in the refractive index of the perspex tube walls and i
the fluid, the LDA measurements were made along the non-parallel :
lines shown in the inset; the corresponding computed velocities
along the same 1lines have been obtained by interpolation.
Agreement between measurement and calculation is generally very
close. This set of data has previously been predicted by Levy et
al (1983) using their scheme for correcting, in a one-dimensional
marching manner, the potential flow pressure distribution.
Agreement between their results and the present computations is
close over the first half of the bend, but deteriorates somewhat
towards the flow-exit, presumably because their rather simple
pressure treatment gradually loses accuracy as the shear flow
becomes more tangled. In fact, Levy et al (1923) report two
regions of flow separation in their computations, one on the
outside of the bend from 0-15° of arc and the other on the inside"
from about 80° to the downstream limit of computations (the
location of this final plane was not reported). There seems no
suggestion in the experimental data that separation occurred and
in the present computations the minimum value of friction factor
was 57% of that in fully developed flow in a straight tube at the
same Reynolds number and occurred just beyond the 900 position.,

The corresponding turbulent flow calculations are shown in W
figures 3-5, the experimental data again being due to Enayet et al

(1982) obtained in the same curved duct but now at a Reynolds

number of 4.3 x 10“. Computations of the velocities were made on

8 20 x 27 mesh in the cross-sectional plane, the additional seven

nodes being placed in the 'parabolic sublayer'. At the node

adjacent to the wall, a typical value of the normal distance yU_/v

was 3; thus turbulent stresses were entirely negligible compared

with those due to viscous shear. As with the laminar flow tests,

a preliminary run was made in a straight duct to develop the

boundary layer by the same amount as the experiments indicate.
Streamwise velocity profiles are shown in figqure 3. For this

flow, agreement beyond 30° is not as complete as for laminar flow. .
Although the general character of the development is reproduced, *
with the accumulation of low momentum fluid on the inside of the '
bend, the detailed behaviour, particularly the double peak in the !
streamwise velocity on the plane of symmetry at Ar°® and 75°, is i
not correctly predicted. (In this region the present computations 3
give nearly the same behaviour as those of Levy et al (1983) who

have also examined this flow). At one diameter downstream of the

bend, agreement is significantly improved. 1Indeed, while the

remarks above have emphasized differences between experiment and
computation, it may be noted that the level of agreement achieved

is far superior to that obtained by Chang et al (1983) ina square
sectioned 180° bend with the same turbulence model in the main 2 3
flow but where wall functions were used to apply near-wall o]
boundary conditions.

Typical secondary velocity profiles are shown In figure 2.
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The "most 'striking™ feature is the fact that "the maximum secondary
velocity occurs very close to the wall, well within the region of
' substantial viscous influence. It is this feature that makes the
wall-function approach inappropriate to this type of flow. The
streamwise wall shear stress around the inner line of symmetry is
' shown in figure S. Due to the combined effect of secondary flow
and the adverse pressure gradient encountered on exit from the
bend, the shear stress falls to zero (indeed becomes marginally
I negative) in the exit region. The present semi-elliptic scheme 1
can strictly not cope with streamwise separations but the reverse
flow velocities were very weak and confined within the viscous
region so that no special measures were needed since the
[ troublesome convective terms were negligible. That the turbulent
flow should separate but the corresponding laminar flow should not
i- is of course entirely contrary to experiences in two-dimensional

flow

: I

. The thermal energy equation has also been solved in this case
l for a molecular Prandtl number of 0.7. A uniform heat flux is

applied starting 3 diameters upstream of the bend, the flow
entering at uniform temperature. As the flow develops around the

bend there is a moderate increase in the average level of the
| Nusselt number. Figure 6 indicates that the circumferential
variation is small over most of the perimeter, but by f0° a strong
decrease in heat transfer coefficient develops on the inside of
the bend due to the fact that the fluid arriving there has been
jpassing close to the pipe wall as it moves from the outside to the
inside of the bend (cf. figure 4). There is also a small peak in
l Nu at the outer line of symmetry, in this case due to the
[ !implngement of relatively cool high velocity fluid. The ratio of

maximum:minimum Nusselt number grows to nearly 5:1 by 78° These
large variations diminish rather slowly on entry to the straight
downstream tangent, the ratio of outer to inner heat transfer
coefficients having fallen only to 4:1 at one diameter beyond the
end of the bend. ?

An even stronger impression of the acrobatic variation of
heat transfer coefficient is conveyed by figure 7 which shows the
Nusselt number variation around the inner line of symmetry. ({The
values are normaélized by the maximum value in the field which
ﬁoccurs at the initial station. Since the entering fluid R
temperature is uniform, the actual value of Nusselt number is of ]
no physical significance - it depends simply on the distance from ‘
the pipe wall of the near-wall node). The modest rise in Nu at ;
entry to the bend arises from the initial flow acceleration on the i
inside of the bend; thereafter the strong decrease indicates the
accumulation of sluggish low-momentum, heated fluid on the inside
transported there by the secondary flow. The whole pattern
jclosely resembles the variation of wall shear stress shown in
figure 5, save that the Nusselt number does not go to zero with Ty
The minimum in Nu, occurring at the bend exit is, however, less:
than 20% of that at entry to the bend. |

| S

At present no measurements of local heat transfeJ
coefficients are known for developing flow around pipe bends.
‘Seban and McLaughlin (19<3) have, however, reported such data for :
the flow of water in long coils where development lengths are K,
sufficient for fully-developed flow to be established. This case Vi

|
i
i
i
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‘Thas ~"been “simulated lsing only four Stréamwise pressure planes,

downstream values being successively transferred upstream until
the flow pattern ceased to change.? The resultant circumferential
distributions of Nusselt number are compared with the
Seban-McLaughlin data in figqure 8. The case of R/d = &2 is quite
well predicted though the experiments display a somewhat greater
circumferential variation than do the computations.
Qualitatively, one would expect this type-of difference to arise
with a Boussinesq viscosity model (BVM), Real turbulence is known
to be highly sensitive to small amounts of streamline curvature,
heat transfer coefficients being augmented in boundary layers
developing on concave surfaces and damped on convex ones. BVMs do
not capture this sensitivity and it is to this failure that we may
attribute the differences shown in figure 8a., A similar behaviour
is also shown in figure Rb for a bend with R/d = 2.5, The
differences in Nusselt number between computation and experiment
on the outer half of the bend are now more marked, the computed
levels being nearly 40% below the data in places. This result may
reflect simply the deterioration in the model's ability to mimic
the turbulent transport processes as curvature effects become
progressively stronger. It should at least be noted, however,
that the experimenters had several difficulties with this tighter
bend. The stainless steel coil was fabricated from a straight
tube and, in bending, creasing occurred on the inside of the bend,
stretching on the outside (with attendant modification of the
tube's electrical resistivity) and some distortion of the
cross-section shape. .In. view of these departures in the
experiment from the idealized geometry and boundary condit1ons,
firm conclusions on this issue cannot be reached.

4. Conclusions !

® A semi-elliptic solving procedure combined with the parabolic
sublayer treatment adjacent to the pipe wall offers a
promising route for the numerical analysis of complex
three-dimensional flow in pipe bends with strong curvature.

® Although agreement is not complete, broadly satisfactory
correspondence has been demonstrated with the velocity data
of Enayet et al (1982) obtained in a tight 90° bend. j

® The present Boussinesq viscosity model 1leads to an
underestimate of the circumferential wvariation in heat
transfer coefficient in fully developed flow through a coil
(though for many engin_ering purposes the measure of
agreement achieved would be satisfactory). The differences
are believed to arise from the known insensitivity of BVMs to
streamline curvature. The introduction, in the future, of a
turbulence model based on second-moment closure should lead
to more satisfactory predictions.

* This reduction in the size of the pressure arrav allowed us to increase
the nurber of radial nodes to 40 and the nuvber of circumferential nodes

to 25, This refinement from the original 27 x 20 mesh qave levels of

Nu which differed bv at most 1% from those cbtained with the coarser mesh,
figure 11lb,
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PSL - An Economical Approach to the Numerical Analysi;

of Near-Wall, Elliptic Flow

by
H. Iacovides and B.E., Launder

University of Manchester Institute of Science and Technology
Manchester M60 1QD, England

Abstract

The paper points out that, in the numerical computation 6f elliptie

or three-dimensional turbulent flows, the neglect of pressure-variations
across the very thin viscosity affected region near the wall allows a
fine-grid analysis of this sublayer without prohibitive penalties in
core or computational time. The scheme has been successfully applied
to the three-dimensional flow around a U-bend.
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Introduction

In the numerical study of complex, two-dimensional turbulent
flows near walls, one commonly finds that a different approach
to handling the near-wall low-Reynolds-number region (i.e. the
viscous sublayer and "buffer" layer) is adopted, depending
upon whether the flow as a whole is of boundary-layer or
"recirculating" type. In the former case, because an
economical, once-through marching solution can be applied,

the near-wall zone is ofteﬁ analysed by adopting a fine

grid to cover the low-Reynolds~number region. Such an
approach is rarely practicable in an elliptic flow, however,
because the coupling of the velocity and pressure fields
requires an iterative solution; this feature means not only
that computer times may typically be two orders of magnitude
greéter than for a boundary-layer study, but also that the
dependent variables must be stored over the whole solution
domain., Because of the substantial core and computer time
requirements, the near-wall region is usually handled by way
of wall functions (1) in which wall adjacent nodes are

placed relatively far from the surface so that they lie in

the region of fully turbulent fluid, The wall functions

s

attempt to embody, through a mixture of analysis and experiment-
al data, the integrated effects of the near-wall sublayer; in
this way, no substantial near-wall mesh refinement is needed.

This feature is crucial in keeping the overall core and
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computing time requirements to manageable levels and is the
reason why, despite the crudeness of the physical treatment,
wall functions are nearly universally adopted. The above
remarks apply with even greater force to three-dimensional

flows.

The problem with such a simple approach to the physics is
that it is not adequate to account for the diversity of the
phenomena displayed by turbulent flow near walls., There
are, for example, many situations where the velocity vector
parallel to the wall undergoes strong skewiqg across the
low-Reynolds-number region, a feature which no wall-function

1 approach appears to have mimicked successfully.

i The purpose of the present note is to recommend a new
'l numerical practice that facilitates the use of

fine near-wall mesh in computing elliptic and th:ee-dimension—
. al flows. This development thus opens the way to more refined
modelling of the physics of the near-wall region than has

hitherto been employed.




The PSL Scheme and its Application

The PSL scheme is based on the idea that, while the flow as
a whole must be regarded as elliptic, there is a thin
parabolic sublayer (whence the acronym) immediately adjacent

to the wall across which static pressure variations are

negligible or, in the case of highly-curved surfaces, where
the variation may be obtained by assuming radial equilibrium.
This parabolic sublayer is taken to extend over the whole of
the low~Reynolds-number region where the turbulent tramsport
properties exhibit such a strongly non-linear variation.

If, as we have argued is desirable on physical grounds, a
fine grid treatment is employed across this region, then
major simplifications may be made to the conventional,
incompressible elliptic treatment, (2)., Our own implement-
-ation of the idea has been within the context of finite
volume procedures employing a staggered arrangement of
dependent variables, Fig. 1 (analogous simplifications can
clearly be adopted with an orthodox finite difference

method). Within the PSL:

(i) the pressure does not require storing (it
is given by the pressure just outside the

region);

(i1) thus, no Poisson or pressure-perturbation ;;\‘

equation has to be solved;
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(iii) .the velocity component normal to the wall may be
obtained very rapidly by cell continuity rather
than by solving the normal momentum equation.
Thus, referring to Fig.l, for a Cartesian
mesh and a two-dimensional flow,

V(I,J) = (U(I-1,3)-U(T,J))8y/éx + V(I,J-1)

These are, of course, the classic boundary-layer simplifications
known for 80 years; what appears to be novel is their application
to a very thin sublayer in a shear flow that is overall not
analysable under the boundary-layer approxiqation. The adaptations
required to most elliptic solving schemes to incorporate the PSL
treatment will be trivial., In the codes used at UMIST the
momentum equation (or equations) for the component(s) parallel

to the wall are solved siﬁultaneously over both the elliptic

region and the PSL; the velocity component normal to the wall
within the PSL is found next by applying continuity to the pressure
cells; thereafter, the momentum equation for this component is
solved over the elliptic region only. Finally the pressure or
pressure-correction equation is solved over the elliptic region
with corresponding adfustments also being made to the velocity

field. , i

There is slso often scope for reducing storage associated with
velocity-component information. In many cases, at the expense

of somewhat more code reorganization, the solution can be

arranged so that velocities in the PSL are stored only on the
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row contiguous with the elliptic region and along two
l-dimensional columns of nodes (which are successively over-

written), rather than in a full 2-dimensional array.

A referee has queried the use of the PSL approach in the
vicinity of a stagnation point where the variation of pressure
normal to the wall is relatively rapid. Perhaps the first
thing to emphasize is that any errors associated with pressure
variations across the buffer region will affect coarse-grid
wall-function schemes at least as much as a PSL approach.

Our experiénce at UMIST suggests in fact that even on the

axis of an impinging jet the PSL approximation can be applied
over most of the low Reynolds number region. Although in

our applications to date the PSL treatment has been applied

to the same number of cells in each columm (viz Fig.l), this
praétice is neither necessary nor optimal in some applications.
In the impinging jet, for example, a thin PSL at the stagnation

point could be expanded to cover the full height of the domain

-

once the jet had been deflected into a radial wall jet. Indeed
a self-adjusting scheme for the number of nodes in the PSL at

any x-pos}tiou could readily be devised,

The most important field of application of the approach is
perhaps in three-dimensional flows describable by the partially

parsbolic equations for there only the pressure field requires

i‘:‘-’.‘.
L

3D storage. The scheme has been successfully applied by the

suthors to the turbulent flow in a circular tube around s 90°

A

»
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each radial striog of
bend. Nine nodes have been put in the parabolic sublayer-along/- 1O

For identical grid demsities in the fully turbulent region,
computing times are no longer (in fact somewhat less) than
with our previously used wall-function approach; core require-

ment is also little affected because most of this is

NP, A A

associated with the pressure field which (alone) has to be

held on a three-dimensional array (and which is identical

for the two approaches since there are no pressure nodes

et P e e Gy UM GEN
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within the PSL). The PSL scheme has also been applied in

high Reynolds number laminar flow around pipe bends where

[

again near the wall the velocity field undergoes very

rapid changes but the pressure is obtained adequately via

radial equilibriuﬁ.

[PPSR S L

The scheme has since been adopted by two of our colleagues

who had hitherto been using a fine-grid low-Reynolds-number

5 1

approach within two-dimensional fully elliptic treatments.

When there were no flow reversals in the near-wall layer,

™

the introduction of PSL reduced their computational times,

in one case by a factor of two and in the other by a factor
of three.t Benefits were much reduced when reverse flow

vas present but it seems likely that these can be substantially

restored by reorganizing the solution in the PSL so that the
direction of marching is always that indicated by the velocity

at the outer edge of this sub-layer.

+ Their numerical rcsults obtained with PSL are insignificantly
different from those given by the fully elliptic solution
using an identical mesh.




Conclusion

The PSL approach allows a fine-grid resolution to be applied

to the near-wall sublayer with no significant increase in

computer time or storage, compared with a conventional wall-

function treatment., Because the former scheme facilitates
a better modelling of the turbulent transport processes, it

is thought that in many cases it may supplant the latter.
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Figure 1 Treatment of Velocity
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